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The strength of the �Rashba-type� spin-orbit coupling in mesoscopic semiconductor rings can be tuned with
external gate voltages. Here we consider the case of a periodically changing spin-orbit interaction strength in
time as induced by sinusoidal voltages. In a closed one dimensional quantum ring with weak spin-orbit
coupling, Rabi oscillations are shown to appear. We find that the time evolution of initially localized wave
packets exhibits a series of collapse and revival phenomena. Partial revivals—that are typical in nonlinear
systems—are shown to correspond to superpositions of states localized at different spatial positions along the
ring. These “spintronic Schrödinger-cat states” appear periodically, and similarly to their counterparts in other
physical systems, they are found to be sensitive to disturbances caused by the environment. The time-
dependent spin transport problem, when leads are attached to the ring, is also solved. We show that the
“sideband currents” induced by the oscillating spin-orbit interaction strength can become the dominant output
channel, even in the presence of moderate thermal fluctuations and random scattering events.
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I. INTRODUCTION

The observation of fundamental flux- and spin-dependent
quantum interference phenomena that can appear in quantum
rings made of semiconducting materials exhibiting
Rashba-type1 spin-orbit interaction2–5 �SOI� have motivated
many studies in the past few years. Additionally, as the
strength of the SOI that determines the spin-sensitive behav-
ior can be tuned with external gate voltages,3 quantum rings,
or systems of them6–10 also have possible spintronic applica-
tions. Because of the conceptual importance and the possible
applications, closed single quantum rings �without attached
leads�,11–15 as well as two- or three-terminal ones were
investigated15–33 extensively.

In the current paper we explore effects which are expected
to appear when the SOI in a single quantum ring is time
dependent. The strength of this interaction is assumed to be a
sinusoidally oscillating function of time. Studies of transport
related problems with oscillating SOI have been initiated in
Ref. 34 for a ring, and in Ref. 35 for a ring-dot system,
mainly in the context of spin currents. Here we focus on
different aspects by starting the analysis with the case of
closed rings and determine the energy levels and eigenstates
of the relevant Hamiltonian.21,36 Using these analytic results
we can calculate the dynamics for arbitrary initial conditions.
The time evolution of states with well-defined total angular-
momentum component j in the direction perpendicular to the
plane of the ring is shown to be analogous to the classical
Rabi flopping. That is, the spin components oscillate with the
Rabi frequency, which in our case depends on the eigenvalue
j, and the oscillation itself is relatively stable against distur-
bances caused by random scatterers. When the initial state is
a localized wave packet, then, in the idealized case, the time
evolution is periodic, if the ratios of the relevant eigenfre-
quencies are rational. We show that appropriately chosen am-

plitude of the SOI oscillations leads to quasiperiodic dynam-
ics, even when the relevant frequencies are not exactly
commensurable.

The description of the conductance properties of the ring
requires the solution of a quantum-mechanical scattering
problem with a time-dependent Hamiltonian.34,35 In this case
energy is clearly not a constant of motion, the relevant con-
tinuity equation contains a source term describing the energy
input which is supplied by essentially the oscillating gate
voltages. Here we explicitly calculate this source term as
well as the energy current density. These results provide a
clear physical picture from which we can solve the scattering
problem. As an application, we show that the ring can shift
the energy of the incoming plane waves �both upward and
downward� by the frequency of the SOI oscillations ex-
pressed in energy units. This effect means the emergence of
“sideband” currents in the transmission, which, in our case,
can become stronger than the direct one. Harmonics of the
driving frequency �which correspond to the sideband cur-
rents in our case� appear naturally in driven nonlinear sys-
tems. However, let us emphasize that quantum rings are spe-
cial in the sense that their geometry induces nontrivial
interference effects that determine the energy-dependent
transmission probabilities. This characteristic of the device is
responsible for the increased relative weight of the sideband
currents in the output.

II. SPIN OSCILLATIONS IN A CLOSED RING

A. Model

We consider a ring37 of radius a in the x-y plane and
assume a time-dependent electric field in the z direction con-
trolling the strength of the spin-orbit interaction character-
ized by the parameter �.3 The Hamiltonian21,36 in the pres-
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ence of spin-orbit interaction for a charged particle of
effective mass m� is given by

H = ����− i
�

��
+

��t�
2�

�r�2

−
�2�t�
4�2 � , �1�

where � is the azimuthal angle of a point on the ring �see
Fig. 1� and the radial spin operator is given by �r /2
= ��x cos �+�y sin �� /2. Additionally, ��=�2 /2m�a2 de-
notes the kinetic energy of the charged particle and

��t� = ��t�/�a = 2A cos��t� �2�

with � being the circular frequency of the periodic external
electric field. Nanoscale quantum rings, for which the Hamil-
tonian above is relevant, can be fabricated from, e.g.,
InAlAs/InGaAs based heterostructures38 or HgTe/HgCdTe
quantum wells.5 For a ring of radius 250 nm made of In-
GaAs, the frequency corresponding to � is around 10 GHz.

In a closed ring, when there are no leads attached to it, the
spinor-valued wave functions have to be periodic in space.
Thus we look for the solution of the time evolution induced
by the Hamiltonian �1� in terms of states which are eigen-
vectors belonging to an integer eigenvalue n of the z compo-
nent of the orbital angular momentum Lz=−i�� and also
eigenvectors of the spin component Sz=�z /2 �in units of ��.
These operators, however, do not commute separately with
H, whereas in each fixed moment of time we have the com-
mutator �H ,Lz+Sz�=0, therefore an eigenvalue of J=Lz+Sz
is a good quantum number.23 A given eigenvalue j of J is,
however, still doubly degenerate, the two space-dependent
spinors

	↑ ,n
 = �ein�

0
�, 	↓ ,n + 1
 = � 0

ei�n+1�� �
belong to the same: j=n+1 /2 half-integer eigenvalue of J.
As a consequence—similarly to the case of constant �—the
eigenvalue equation of H expanded in the �	↑ ,n
 , 	↓ ,n+1
�
manifold reduces to separate 2	2 matrix problems corre-
sponding to given values of j. Restricting H to one such
subspace we obtain the two-dimensional matrix

Hj = ����j − 1/2�2 j��t�
j��t� ��j + 1/2�2� .

In order to solve the time-dependent Schrödinger equation
with the periodic coupling of the form �2� we look for the
solution in a subspace fixed by a given value of j in the form

	
�t�
 = aj�t�ei�t/2	↑ , j − 1/2
 + bj�t�e−i�t/2	↓ , j + 1/2
 . �3�

This is useful when—as in the current paper—the focus is on
relatively weak spin-orbit strengths, and one can use stan-
dard rotating wave approximation �RWA�, i.e., terms oscil-
lating rapidly, with frequency 2� in the off-diagonal terms in
the Hamiltonian can be neglected. Note that in our case, this
widely used approximation is essentially equivalent to an
appropriate Floquet scattering-matrix description39,40 of the
problem with neglecting the second and higher harmonics of
�. Using RWA, and introducing the dimensionless time vari-
able �=�t, the system of equations determining the evolu-
tion has the form

i
d

d�
�aj

bj
� = H̃j�aj

bj
� �4�

with the dimensionless operator

H̃j = � j2 +
1

4
�1 + 
− � j −

�

2�
� Aj

�

Aj

�
� j −

�

2�
� � . �5�

The solution of the system �4� amounts to solve the eigen-

value equation of H̃j yielding

Ej
� = � j2 +

1

4
� �

1

2
��2j − �̃�2 + 4Ã2j2, �6�

where �̃=� /�, Ã=A /�. The corresponding eigenspinors are
given by

	
 j
+
 = �uj

v j
�, 	
 j

−
 = �− v j

uj
� , �7�

where uj =cos 
 j /2, v j =sin 
 j /2, tan 
 j =
2Ãj
�̃−2j , and

v j

uj
=

��2j − �̃�2 + 4Ã2j2 + 2j − �̃

2Ãj
. �8�

Note that for a given j, the spin operator S�
 j ,��
=Sx sin 
 j cos �+Sy sin 
 j sin �+Sz cos 
 j �the spin compo-
nent in the direction given by 
 j and �� also commutes with
H, therefore in the case of a given j the expectation value of
the spin direction varies along the ring in accordance to the �
dependence of the operator above.

The states �	
 j
�
 , j= . . .−3 /2,−1 /2,1 /2,3 /2. . .� obviously

form a basis in the space of periodic spinor valued wave
functions on the ring. Therefore, the time evolution �in the
interaction picture introduced above� of any initial state

	
�0�
 = � f���
g��� � �9�

can be obtained in a straightforward way
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FIG. 1. The geometry of the device and the relevant spinor-
valued wave functions in the different domains.
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�0�
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−�	
 j
−
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−	
�0�
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where the inner products ��. 	 .

 that provide the expansion
coefficients are the following:

��
 j
+	
�0�

 = uj

� 1

2�
�

0

2�

e−i�j−1/2��f���d�

+ v j
� 1

2�
�

0

2�

e−i�j+1/2��g���d� . �11�

B. State evolution of electrons with definite angular
momentum: Rabi oscillations, collapse and revival

States with well-defined z component of the total angular
momentum are linear combinations of the spinors 	
 j

+
 and
	
 j

−
 with the same value of j. The time evolution of these
states can be of interest because conservation of the angular
momentum may provide a method for preparing them. Ab-
sorption of circularly polarized photons, e.g., can excite
these states. �Interaction of short light pulses with the elec-
trons confined in a ring has been discussed in Refs. 41 and
42.�

As it is known,43 if a two-level system is getting excited
with a resonant external field, the interaction produces Rabi
oscillations of the level populations with a frequency propor-
tional to the amplitude of the external field. If there is a
detuning between the external field and the level splitting,
the Rabi frequency is modified and the oscillations become
less pronounced. The dimensionless Rabi frequency corre-

sponding to the Hamiltonian H̃j �see Eq. �5��, is given by

�R = ��2j − �̃�2 + 4Ã2j2. �12�

In our case the �dimensionless� level splitting �E=2j, the

detuning 2j− �̃, as well as the effective coupling Ãj depend
on j, that is, on the z component of the total angular momen-
tum. This implies that the resonance frequency of the exter-
nal field is also different for different values of j, namely,
�r= �̃r�=2j�. When this resonance condition is met, the
weights of the spin-up and spin-down components in the
eigenspinors given by Eq. �7� are equal, tan 
 j /2=1 �in this
case independently from j.� Assuming that the initial state is
spin polarized in the positive z direction

	
�0�
 = �ei�j−1/2��

0
� �13�

complete Rabi oscillations appear in the resonant case. That
is, the time-dependent quantum-mechanical expectation
value of the z component of the spin oscillates between −1 /2
and 1/2 �in units of �� at a given point of the ring

S̄z��,�� = S̄z�0,��cos �R� =
1

2
cos �R� . �14�

�The amplitude of these oscillations is smaller for nonreso-

nant external fields.� In the time evolution of the S̄x and S̄y

expectation values, oscillations with the frequency of the ex-
ternal field superimpose on the Rabi flopping

S̄x��,�� = −
1

2
sin��R��sin��̃� − �� ,

S̄y��,�� =
1

2
sin��R��cos��̃� − �� . �15�

Figure 2 visualizes the spin precession for the resonant case.
An arrow starting from a certain point of the ring points into
the direction of the spin at that spatial position.12,44 The
lengths of the arrows are proportional to the local electron
density regardless of the spin direction

���,t� = ����,t�	���,t�
 �16�

with �. 	 .
 denoting the inner product of spinors �without in-
tegrating over the spatial degrees of freedom.� Note that in
the current case �—and consequently the lengths of the
arrows—do not depend on the position, in this sense the
oscillations affect only the spin degrees of freedom.

Let us note that if the initial state is not a pure quantum-
mechanical state, e.g., it is an equal weight incoherent sum
of the eigenstates �that is, the spin part of its density operator
is proportional to unity�, then no Rabi oscillations will be
visible. Therefore in a usual, not specially prepared sample
in equilibrium at low temperatures the question whether
these oscillations can be observed depend on the position of

ΩRτ
2π = 0 ΩRτ

2π = 0.05

ΩRτ
2π = 0.1 ΩRτ

2π = 0.15

ΩRτ
2π = 0.45 ΩRτ

2π = 0.5

ΩRτ
2π = 0.75

ΩRτ
2π = 1.0

FIG. 2. �Color online� Resonant Rabi oscillation in the quantum
ring. The initial wave function is given by Eq. �13� with j=3 /2

while Ã=0.1 leading to �R=0.3. See Ref. 57.
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the Fermi level: if it is between Ej
+ and Ej

− for some value of
j, then Rabi flopping can be present, while when all occupied
states are “paired,” i.e., the eigenstates corresponding to Ej

+

and Ej
− are both occupied, their opposite precession cancels

out.

C. Time evolution of wave packets

In contrast to Sec. II B, where we have treated states with
well-defined angular momentum, we consider here the time
evolution of a complementary situation, when the initial state
is a localized wave packet with a small uncertainty in the
position variable �. Starting with a narrow, spin-polarized
initial state, one expects it to diffuse so that the spin direction
changes locally during the process. However, the ring geom-
etry implies that the “tail” and “head” of the spreading wave
packet will interfere when they start to overlap. This leads to
rather complex dynamics with an additional characteristic
feature that can already be seen at this point. Namely, if we
assume that there are a finite number of non-negligible coef-
ficients in the expansion of the initial state in terms of the
eigenstates of the Hamiltonian, the discrete nature of the
spectrum �which is again a consequence of the geometry�
may cause the initial phases to be restored after a certain
“revival time.” In other words, we expect periodic “collapse
and revival” phenomena: The initially localized wave packet
becomes delocalized along the ring but later it reassembles
again. �Note that the term collapse—similarly to the case of
an atom interacting with a quantized field45—means here
merely the decay of some expectation values and completely
unrelated to the notion of measurement induced collapse of
the wave function.� In principle, when the ratio of some im-
portant frequencies is irrational �i.e., it is not a fraction of
two integers�, the revival time is infinitely long. However,
revivals appear when all frequencies can be written essen-
tially as integer multiples of a base frequency. This condition

can be met by appropriately choosing the amplitude Ã

=A /� of the SOI oscillations in Eq. �2� so that 1+ Ã2

= �m /k�2 with integers k and m. Then

En
� � � j2 +

1

4
� � j

m

k
, k,m integer �17�

and the base frequency is � /k, leading to revival times Tr
=2k� /�. The approximation above is valid if �̃ is negligibly
small compared to the relevant values of j. Clearly, this re-
quirement cannot be met always, but as we will see, rapidly
oscillating SOI strengths modify the above picture only in
the sense that revivals become less pronounced.

Figure 3 shows the time evolution of the electron density
given by Eq. �16� at �=0 for a wave packet which is initially
polarized in the positive z direction and centered at �=0 with
Gaussian envelope �see Fig. 4.� In the upper �lower� panel

Ã2=3 �21/4�, Eq. �17� is satisfied with m=2, k=1 �m
=5, k=2�, thus the revival time Tr is very close to 2� /�
�4� /��. The initial phase relations are restored periodically,
although for larger values of �̃ the amplitude of the consecu-
tive revivals decay faster. Clearly, the requirement of com-
mensurable frequencies is related to a rather mathematical

point of view, it is hardly possible to exactly satisfy it in an
actual experiment. Therefore we investigated less ideal pa-
rameters as well, and, according to the inset of Fig. 3, less
pronounced revivals still appear when the parameters are not
exactly the ideal ones.

However, an additional, genuinely nonlinear effect can
also be seen in Fig. 3: partial revivals at certain time instants
Tr /m with m being an integer. The significance of these less
pronounced peaks can be seen in Fig. 4, where the dynamics
of the spinor valued wave function is visualized in the same
way as in Fig. 2. As we can see, the initially localized wave
packet becomes first delocalized �collapse�, then, at the par-
tial revival times there is a superposition of wave packets
localized at different positions, and finally, at Tr, we can see
a single wave packet again �revival�. Let us note that the
emergence of the “spintronic Scrödinger cat” states is a typi-
cal nonlinear feature, similar phenomena appear, e.g., in the

FIG. 3. The time evolution of the electron density at �=0 for

the initial state shown in Fig. 4. The parameters are Ã=�3, �̃=1.0

�upper panel� and Ã=�21 /4, �̃=0.1 �lower panel�; these values sat-
isfy Eq. �17� with m=2, k=1 and m=5, k=2, respectively. The
difference in the periodicity can clearly be seen and signatures of
partial revivals are also present. The inset of the top panel shows the
height of the first revival peak �denoted by the arrow� as a function

of Ã.

τ
2π = 0 τ

2π = 0.025

τ
2π = 0.167 τ

2π = 0.25

τ
2π = 0.5

τ
2π = 0.625

τ
2π = 0.75 τ

2π = 1.0

FIG. 4. �Color online� Wave packet motion in a quantum ring

�Ã=�3, �̃=1.0� Note the appearance of superpositions of states
that are localized at different positions. See Ref. 57.
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case of a wave packet moving in a Morse potential.46 Finally,
let us note that so far we considered only the effect of the
energy levels but the oscillation of the external field induces
an additional overall rotation of the spin direction around the
z axis at a frequency of �. This is why although the spatial
form of the initial wave packets are restored at Tr, the spin
direction is usually different from the initial one.

III. RINGS WITH ATTACHED LEADS: CONDUCTANCE
PROPERTIES

A. Local energy balance

One of the most direct ways of gaining information of a
semiconductor device is measuring its conductance. Clearly,
the model discussed so far cannot predict properly the result
of such experiments: Effects related to the leads that connect
the device described by the time-dependent Hamiltonian to
the contacts have to be considered as well.47–49 When the
Hamiltonian of the ring does not depend on time, this prob-
lem has already been solved.21 In that case basically three
requirements should be met to obtain the solution: �i� energy
conservation, �ii� continuity of the wave function, and �iii�
vanishing net spin-current densities at the junctions. Calcu-
lations of the conductance are usually carried out at a fixed
energy �practically at the Fermi energy, as at low tempera-
tures electrons around this energy level determine conduc-
tance properties47�, in which case energy conservation is
trivially satisfied. Having solved the eigenvalue problem of
the Hamiltonians in the different domains �ring sections and
leads�, points �ii� and �iii� above imply that the resulting
wave functions have to be joined together. The spinor com-
ponents have to be continuous, and the spin current21 that
enters a junction, should also leave it

�
all leads

js = 0. �18�

Let us note that besides the Griffith’s boundary conditions50

that have been described above �and will be used throughout
this paper� there are other physically realistic and often used
possibilities as well. The choice of the boundary conditions
is in fact shown to be related to the reduction of a two-
dimensional problem to one dimension.51

However, in our case, when the Hamiltonian itself con-
tains explicit time dependence, energy conservation cannot
simply be taken into account by solving the problem within a
given eigensubspace of the Hamiltonian. Instead, we use a
continuity equation containing an explicit source term S

�

�t
�E��,t� = �jE + S =

�

��
jE��,t� + S��,t� �19�

for the local energy density

�E��,t� = Re����,t�	H��,t����,t�
 �20�

with the spinor inner product of Eq. �16�. Note that, however,
the Hamiltonian �1� is Hermitian only with respect to the
inner product that involves spatial degrees of freedom as
well �see Eq. �11��, that is why we take the real part of the
expectation value in Eq. �20�. Let us note additionally, that

the time-dependent Hamiltonian �1� can be interpreted to de-
scribe the circular motion of a nonrelativistic charged par-
ticle in the presence of the scalar potential �� /4e� and a
spin-dependent vector potential. The latter means an effec-
tive, spin-dependent electric field52 being proportional to the
time derivative of ��t�, and can also be related to an effec-
tive electromotive force53 that can induce spin currents.

A calculation similar to that given in the Appendix of Ref.
21 leads to

S��,t� = Re����,t�	
�

�t
H��,t����,t�� �21�

and

jE�t,�� = Re�i����	
�

��
H�� − � �

��
�	H���

− ���	�rH�
� . �22�

The continuity Eq. �19� is a local relation, its physical mean-
ing is seen most clearly when it is integrated over a certain
domain: the change in the energy inside the domain is a
consequence of the energy currents that flow in/out through
the boundaries, plus the source term related to the time de-
pendence of the Hamiltonian. In our case this is due to the
oscillating strength of the spin-orbit interaction, so basically
the time-dependent electric field between the gate electrodes
provides this extra energy. In the limit when the domain
reduces to a single point, e.g., to one of the junctions, finite
terms �e.g., the source term� that are integrated over this
domain of zero measure disappear, thus Eq. �19� reduces to

�
all leads

jE = 0, �23�

that is, the net energy-current density has to vanish.

B. Solution with time-dependent boundary conditions

To be concrete, let us consider the geometry shown in Fig.
1 and assume for the sake of simplicity that the strength of
the SOI is zero in the leads. An incoming spinor-valued wave
is assumed to reach the device through lead I and then it is
generally partially reflected. Thus using expansion in terms
of plane waves, we may write

	�I
 = �
0

�

e−iE�k���eikx� f1�k�
f2�k� � + e−ikx�r1�k�

r2�k� ��dk �24�

with E�k�= �2k2

2m���
=k2a2. �Note that, e.g., the value of ka

=20.4 corresponds to a ring with a=250 nm at the Fermi
energy �11.13 meV� of InGaAs.�

There is no incoming wave in the outgoing arm, that is

	�II
 = �
0

�

eikx−iE�k���t1�k�
t2�k� �dk . �25�

In the interaction picture introduced by Eq. �3�, the spinor
components in the incoming and outgoing leads obtain time-
dependent phases, e.g, �f1�k� , f2�k�� have to be replaced by
�f1�k�ei�̃�/2 , f2�k�e−i�̃�/2�.
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As a consequence of the presence of the leads, the index j
of the eigenstates of the Hamiltonian �1� does not need to be
an integer any more, and in agreement with the notation used
in Ref. 23 we replace j by the continuous quantum number
�. We expand the wave function in the two arms using this
continuous variable and accordingly shift it from the index to
the argument. In the interaction picture mentioned above we
have

	�u
 = �
−�

�

B+���e−iE+�����u���ei��−1/2��

v���ei��+1/2���d�

+ �
−�

�

B−���e−iE−�����− v���ei��−1/2��

u���ei��+1/2�� �d� . �26�

A similar expression can be written for the spinor-valued
wave function in the lower arm, where the expansion coeffi-
cients will be denoted by C+��� and C−���. In these equa-
tions the functions f1�k� and f2�k� are assumed to be known,
and we have to determine t1�k� , t2�k� ,r1�k� ,r2�k� and
B���� ,C���� from the boundary conditions. For the sake of
definiteness let us focus on junction 1. The requirement of
continuity reads

	�I�x = 0,��
 = 	�u��1 = 0,��
 = 	�l��2 = 0,��
 �27�

and it has to be satisfied at all times �. Provided this holds, it
can be shown that the requirement of vanishing energy cur-
rent density at this junction is satisfied, if

a
�

�x
	�I�x,��
	x=0 =

�

��1
	�u��1,��
	�1=0 +

�

��2
	�l��2,��
	�2=0

�28�

similarly to the case of a constant Hamiltonian, but now for
arbitrary �. In other words, energy conservation follows from
the fact that the requirements �ii� and �iii� mentioned in the
introductory part of this section are satisfied at any given
time.

The set of Eqs. �27� and �28� together with the corre-
sponding ones for junction 2 are solved most straightfor-
wardly by Fourier transformation with respect to �. E.g, the
first equation in Eq. �27� is transformed as

� 	�I�x = 0,��
eiw�d� =� 	�u��1 = 0,��
eiw�d�

which leads to

� f̃1�k+�w��

f̃2�k−�w��
� +� r̃1�k+�w��

r̃2�k−�w�� � = B̃+��1
+�w��	
+��1

+�w��


+ B̃+��2
+�w��	
+��2

+�w��
B̃−��1
−�w��	
−��1

−�w��


+ B̃−��2
−�w��	
−��2

−�w��
 �29�

where k��w�=�w��̃ /2 /a if the argument of the square root
is not negative, and zero otherwise. Similarly, �1

+�w� and
�2

+�w� are the two solutions of the equation E+���=w and
similarly E−��2

−�w��=E−��1
−�w��=w. Additionally,

B̃���� =
B����

	�E����/��	
�30�

and f̃ , r̃ also denote f and r divided by the modulus of
�E�k� /�k.

For a given value of w, Eqs. �27� and �28� and their coun-
terparts at junction 2 leads to a closed set of 12 linear equa-
tions with 12 unknowns �which are the expansion coeffi-
cients r1 ,r2, etc. evaluated at certain values of their
respective arguments�. This means that by sweeping w so
that k��w� covers the range where f1�k+�w�� and f2�k−�w��
are nonzero, we can obtain all nonzero values of the un-
known functions. Thus inverse Fourier transformation can be
used to calculate the solution of the time-dependent transport
problem. �Note that the linearity of the equations implies that
when f1�k+�w��= f2�k−�w��=0, the solution also vanishes ev-
erywhere.� This method provides a general framework to in-
vestigate the conductance properties of the device with os-
cillating SOI strength.

C. Discussion

First we consider the case when the incoming wave has a
narrow energy distribution, as shown by the dotted line in
Fig. 5. For the sake of simplicity we assume a completely
unpolarized input spin state and calculate the weights of the
plane waves eikx in the output. If the external electric field
were constant, this latter distribution of the spatial frequen-
cies given by 	t1�k�	2+ 	t2�k�	2 would be zero outside the sup-
port of 	f1�k�	2+ 	f2�k�	2, as an incoming plane wave with a
given value of k would lead to transmitted states with the
same wave number. �The linearity of the problem would for-
bid those values of k in the output, for which 	f1�k�	2
+ 	f2�k�	2=0.� However, as shown in Fig. 5, this is not the
case, when the SOI strength oscillates. Besides the central
peak corresponding to the wave numbers contained in the
input, there are two additional values of k, where 	t1�k�	2
+ 	t2�k�	2 has pronounced maxima. Calculating the separation
of the neighboring peaks in frequency units, we obtain that
both are equal to the frequency of the SOI oscillations, �.
Mathematically, this result is a consequence of the structure

FIG. 5. �Color online� The weight 	t1�k�	2+ 	t2�k�	2 of the trans-
mitted plane waves as a function of the wave number k �solid black
curve�. The incoming distribution 	f1�k�	2+ 	f2�k�	2 is shown by the
dotted line. The triplet structure is a consequence of scattering

events k→�k2��̃ /a2. The parameters are Ã=0.5, �̃=1.0.
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of the fitting equations, namely, that e.g., f1�k� is connected
to both t1�k� and t2��k2− �̃ /a2�

f2�k� → �t1��k2 + �̃/a2�
t2�k�

� ,

f1�k� → �t1�k�

t2��k2 − �̃/a2�
.� �31�

In a somewhat wider context, we can say that the effect is
related to the time-energy uncertainty relation: when the
characteristic time of a process is not infinitely long, it can-
not correspond to a well-defined energy value. Let us also
note that the “sideband currents” shown in Fig. 5 also appear
when an oscillating scatterer is being placed in the ring.54,55

Considering the limit of infinitely narrow incoming distri-
bution, i.e, when f1�k� and f2�k� are either zero, or propor-
tional to ��k−k0�, we may ask what the conductance of the
device is. According to the previous results, in general, the
transmitted �and reflected� state contains wave numbers k0

and �k0
2��̃ /a2. �Note, however, that at zero temperature, if

k0 represents the Fermi wave number, then the output corre-
sponding to k=�k0

2− �̃ /a2 is suppressed due to the occupa-
tion of levels with k�k0.� Then a direct calculation of the
output current shows that generally it will not be constant but
oscillations with the frequency of the external field appear.
Therefore we calculate average conductance, when time-
dependent cross terms disappear due to averaging over a pe-
riod of T=2� /�. According to the Landauer-Büttiker for-
mula, this averaged conductance in units of e2 /� is given by

Ḡ = � 	t1�k0�	2 + 	t2�k0�	2 +
�k0

2 + �̃/a2

k0
	t1��k0

2 + �̃/a2�	2

+
�k0

2 − �̃/a2

k0
	t2��k0

2 − �̃/a2�	2, �32�

where the sum runs over two orthogonal inputs, e.g.,
�exp�ik0x� ,0� and �0,exp�ik0x��. The result of this calcula-
tion is shown in Fig. 6. As we can see, the triplet structure
shown in Fig. 5 appears again, here in the form of minima in

the conductance. Close to the pronounced minimum of Ḡ
around, e.g., kmina=20, there are two additional minima cor-
responding to k=�kmin

2 ��̃ /a2. This “hole burning” in the
transmission is the consequence of the fact that the minima

of the third and fourth terms in Eq. �32� are situated at dif-
ferent positions from those of the first two terms. In other
words, scattering events that change the momentum, also
modify the conductance of the device.

Finally let us investigate the transmission of a wave
packet through the ring. We choose here the case which in
some sense is the opposite to the one discussed above, as
now the distribution 	f1�k�	2+ 	f2�k�	2 is wide in k, resulting in
a narrow wave packet in space. For the sake of definiteness,
the initial state is assumed to be spin polarized in the positive
z direction, and localized in the input arm with Gaussian
envelope

	��x,t = 0�
 = �e−�x − x0�2/�2+ik0x

0
� �33�

as shown in Fig. 7 for the case of �=0.5a, x0=1.5a, and
k0a=10. As we can see, when the wave packet reaches the
ring, it is partially reflected, and the reflected waves interfere
with the incoming packet, that leads to oscillating electron
density in the input arm. The fraction of the wave packet that
enters the ring travels along the two arms, interferes around
the output junction and produces an output wave packet.
However, there is a certain probability for the electron not to
leave the ring, there is a fraction of the wave packet that
moves backward toward the input junction, where interfer-
ence phenomena can be observed again, and a weak reflected
wave packet is formed that leaves the ring through the input
junction. These processes are repeated periodically until the
modulus of the wave function becomes negligible. As a con-
sequence, both in transmission and reflection we can observe
a series of wave packets with decreasing amplitudes and in-
creasing widths. The separation of these wave packets in
time is essentially the round trip time of the wave packet in
the ring, which is around � / �ak0��. Effects related to the
SOI are twofold: first the transmission probability �that de-
termines the heights of the consecutive transmitted wave
packets� depends on the amplitude and frequency of the SOI

FIG. 6. �Color online� Time-averaged conductance given by Eq.

�32� for the case of Ã=0.5 as a function of ka.

τ = 0

τ = 0.1

τ = 0.15

τ = 0.2

FIG. 7. �Color online� Transmission of a wave packet through

the quantum ring �Ã=0.5, �̃=0.5�. The initial state is given by Eq.
�33�, with �=0.5a, x0=1.5a. The round trip time is given by
�round=� / �k0a�=0.2, where k0a=10. See Ref. 57.
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oscillations and the spin directions in the ring are also deter-
mined by these parameters.

IV. RANDOM SCATTERERS, THERMAL FLUCTUATIONS,
AND AN APPLICATION

In this section we investigate to what extent the effects
discussed so far are still present in a more realistic context,
when random scattering events and thermal fluctuations are
also taken into account. To this end, first we introduce point-
like random scatterers represented by Dirac-delta potentials.
That is, we add a term U�D�=u�D����� to the Hamiltonian
�1� and solve the time-dependent problem determined by this
perturbed Hamiltonian. The strength of the potential, U�D�,
is random, it is drawn from a normal distributions, with zero
mean and root-mean-square deviation D. As a result of the
random fluctuation of the potential, the “average” state of the
system cannot be represented by a pure quantum-mechanical
state, it becomes a mixture that can be described by a density
operator ��D�. In practice, ��D� is calculated from several
computational runs, with appropriate averaging. That is, for a
particular value of the potential U�D�, we obtain a solution
spinor, that we write symbolically as 	��U�D��
. When after
Mc computational runs, the estimated density operator

��D� =
1

Mc
� 	��U�D��
���U�D��	 �34�

converges, we have all the possible information needed to
describe what effects result from the disturbances character-
ized by the variable D. In this way, by tuning D we can
model weak disturbances �small D� as well as the case when
frequent scattering events completely change the character of
the transport process �corresponding to large values of D�.

The energy distribution of the input electrons can be taken
into account by appropriate averaging over the possible input
energies. In thermal equilibrium at temperature T, the con-
ductance of the device can be written as

G�T� =� p�E,T�Ḡ�E�dE , �35�

where p�E ,T�=− �
�E �1+exp�E−EF� /kBT�−1 and Ḡ�E� is

given by Eq. �32�. �Note that this is essentially the Landauer-
Büttiker formula at finite temperature and low bias.47� In
actual numerical calculations we can convert the integral Eq.
�35� to a sum over the possible energies, where the expres-
sion for ��T� is similar to Eq. �34� but the weights of the
projectors are not uniform, they are determined by the Fermi
distribution.

Considering first a closed ring, we found that an indi-
vidual scatterer shifts the energy levels according to the
strength of the Dirac-delta potential. Consequently, when av-
eraging over numerous random scattering events, we obtain a
certain broadening of the possible energies as well as the
Rabi frequencies. Investigating the time evolution of the ex-

pectation value S̄z, we found that for the parameters and ini-
tial state shown in Fig. 2, the height of the first maximum at
t=2� /�R decreases when we increase D, the width of the
random distribution. As a reference, we considered the case

of time-independent Hamiltonian �when ��t� is constant in
Eq. �1�� and calculated the Aharonov-Casher conductance
oscillations for various values of D. We found that the vis-
ibility

I�D� =
Gmax�D� − Gmin�D�
Gmax�D� + Gmin�D�

�36�

of these experimentally detectable oscillations decreases
from unity to 1/2 while D increases from zero to D1/2
=0.03	EF. �EF denotes the Fermi energy.� At D1/2, the first

maximum of S̄z is approximately 50% of the ideal value, thus
a damped oscillation can be detected. On the other hand, the
revival phenomena shown in Figs. 3 and 4 are more sensitive
to the broadening of the frequencies and consequently they
are not expected to be detectable in usual samples. Note that
this is in accordance with the expectations, as the superposi-
tions shown in Fig. 4 are highly nonclassical and conse-
quently they are exceptionally sensitive to any kind of envi-
ronmental noise.56

The question to what extent the transport properties of the
time-dependent problem are modified by random scatterers
and thermal fluctuations will be analyzed using a possible
application of our model. First we recall Figs. 5 and 6, show-
ing a triplet structure in the transmission and the transmis-
sion probabilities for infinitely narrow incoming energy dis-
tribution. Clearly, the first effect is rather common when
oscillating potentials are considered but the second one is
based on the specific spin-dependent interference phenomena
that appear in a ring structure. Combining these two effects,
one can see that it is possible to find parameter values, where
the ratio of the transmitted “direct” and “sideband” currents
is strongly modified by the transmission profile. Particularly,
if the transmission probability for the central peak is sup-
pressed by interferences �like around integer values of ka in
Fig. 6�, sideband currents can provide stronger output signals
than the direct one. �Usually, in other physical systems, it is
mainly the strength of the oscillating potential that deter-
mines the relative intensity of the relevant frequencies in the
output.� This situation is shown in Fig. 8 for the case of
spin-up input in the z direction. Let us recall that while in the
direct current this spin direction remains unchanged, the
sideband current corresponds to oppositely polarized output
spins. �Note additionally, that the positions of the minima of
the transmission probabilities as a function of ka can be
tuned by adding a constant SOI term to the Hamiltonian �1�,
a minimum can even be transformed into a maximum by
using experimentally achievable SOI strengths.21� The ques-
tion whether the two peaks are distinguishable, is clearly
related to the ratio of �� and the width of the thermally
broadened input energy distribution: the shift induced by the
oscillating SOI strength has to be larger than the width of the
distribution.

Now we investigate whether the effect shown by Fig. 8 is
still visible when D�0, i.e., random scattering events are
also taken into account. Choosing experimentally achievable
temperatures,5 Fig. 9 shows the ratio �Is�E�dE /�Id�E�dE of
the sideband and direct peaks �seen in Fig. 8� as a function of
the strength D of the random scattering events. �Numerically,
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if EF is assumed to be in the range of 10 meV, the tempera-
tures corresponding to the curves shown in Fig. 9 have the
order of magnitude of 100 mK.� As we can see, the effect of
pronounced sideband peaks is still present for moderate val-
ues of D.

Finally let us note that our model describes narrow rings,
corresponding to the case when a single transversal mode is
responsible for the wave function propagation. In samples
where the radius and the width of the ring are comparable,
the transport is due to many channels and our results are not
directly applicable. In the case of narrow rings, however, the
analysis of this section shows that some of the previously
predicted effects—that are based on an idealized
description—are stable enough against random scatterers and
thermal fluctuations to be visible.

V. SUMMARY

In this paper we investigated quantum rings with time-
dependent SOI. The effect of the time varying sinusoidal SOI
strength was first investigated in an isolated ring, i.e., a ring
without any attached leads. In this case we have shown that
for initial states with well-defined z component of the total
angular-momentum Rabi oscillations appear: the spin direc-
tion along the ring changes periodically in time. Considering
the dynamics of an initially localized wave packet, we dem-
onstrated that appropriately chosen amplitudes of the SOI
oscillations can lead to quasiperiodic time evolution: first the
wave packet becomes delocalized �this process can be
termed as collapse�, then at the revival time it reassembles

again. During this process �without thermal fluctuation or
scattering events�, there are time instants �partial revival
times� when superpositions are formed, which correspond to
wave packets localized at different positions along the ring.

In the second part of the paper we focused on the trans-
mission properties of the device. We introduced a general
method to treat the quantum-mechanical scattering problem
for a time-dependent Hamiltonian. Based on this result, we
have shown that in general the outgoing plane-wave states
will have an energy distribution which is different from that
of the incoming states. For a single incoming plane wave
with energy E, the output shall contain energy values E and
E���, that is, shifts corresponding to the frequency of the
SOI oscillation appear. If the input is spin polarized, e.g., in
the positive z direction, the sideband current corresponding
to E+�� is related to an oppositely polarized output. Addi-
tionally, it was shown that one can find parameter values,
where sideband currents can provide a stronger output signal
than the direct one. This transport property is specific to
quantum rings, where the most important role in the suppres-
sion of the direct current is played by spin-dependent quan-
tum interference, which is closely related to the geometry of
the device. Additionally, this effect is still visible at finite
temperatures even if random scattering events modify the
dynamics. According to our calculations, Rabi oscillations
can also survive a moderate level of scattering induced
dephasing.
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FIG. 8. �Color online� Direct and sideband currents when the
input-energy distribution �centered at Fermi energy corresponding
to ka=19.98� is broadened due to thermal fluctuations. The relevant
part of the transmission profile already seen for a wider interval in

Fig. 6, is also shown. In this case �parameters are: Ã=0.75, �̃=5.0�
the sideband current can be considerably stronger than the direct
one. The input spins are chosen to be polarized in the positive z
direction and the transmission peaks have been normalized so that
the maximum of the higher one is 1, for both temperatures,
separately.

FIG. 9. �Color online� The ratio of the integrated sideband and
direct peaks shown in Fig. 8 as a function of the strength of the
random scattering events. Integration has been carried out with re-
spect to the energy.
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